
Privacy-preserving Decentralized Aggregation for
Federated Learning

Beomyeol Jeon*1, S. M. Ferdous*2, Muntasir Raihan Rahman†3, and Anwar Walid4

1University of Illinois at Urbana-Champaign, 2Purdue University, 3Microsoft, 4Nokia Bell Labs
1bj2@illinois.edu, 2sferdou@purdue.edu, 3Muntasir.Rahman@microsoft.com, 4anwar.walid@nokia-bell-labs.com

Abstract—Federated learning is a promising framework for
learning over decentralized data spanning multiple regions. This
approach avoids expensive central training data aggregation
cost and can improve privacy because distributed sites do
not have to reveal privacy-sensitive data. In this paper, we
develop a privacy-preserving decentralized aggregation protocol
for federated learning. We formulate the distributed aggregation
protocol with the Alternating Direction Method of Multiplier
(ADMM) and examine its privacy weakness. Unlike prior work
that use Differential Privacy or homomorphic encryption for
privacy, we develop a protocol that controls communication
among participants in each round of aggregation to minimize
privacy leakage. We establish its privacy guarantee against
an honest-but-curious adversary. We also propose an efficient
algorithm to construct such a communication pattern, inspired
by combinatorial block design theory. Our secure aggregation
protocol based on this novel group communication pattern design
leads to an efficient algorithm for federated training with privacy
guarantees. We evaluate our federated training algorithm on
image classification and next-word prediction applications over
benchmark datasets with 9 and 15 distributed sites. Evaluation
results show that our algorithm performs comparably to the
standard centralized federated learning method while preserving
privacy; the degradation in test accuracy is only up to 0.73%.

Index Terms—federated learning, secure aggregation

I. INTRODUCTION

In various IoT and networking applications, data is collected
and stored at the source, and there is an interest in utilizing
distributed data to train machine learning (ML) models. How-
ever, due to transport costs, delays, and privacy concerns, the
data may not be moved to a central location for processing and
learning. For example, several factory sites, employing same
robots, are interested in training an ML model for a robot
maintenance scheduling plan that can benefit each competing
factory site without central aggregation of privacy sensitive
data. To improve the scheduling plan quality, the factories
may want to utilize all data collected from robots at all sites.
Still, they may not want to share privacy-sensitive raw data or
move it to a central location. Similar use-cases arise in hospital
settings, where different hospitals want to improve diagnosis
accuracy by utilizing the privacy sensitive patient data of all
hospitals without central aggregation.

Federated learning (FL) [1], [2] has been proposed as
a promising framework for learning over decentralized data
spanning multiple regions that would allow such decentralized

*Both authors contributed equally to this work.
†This work was done when the author was at Nokia Bell Labs.

private sites to learn a global model that trains over all data
across sites without central aggregation. Instead of transferring
training data, each site trains identical ML models leveraging
their local data. A central server aggregates these locally
trained models to generate a global model and distributes it
over all the sites. In FL, private local data stays local; only the
trained model parameters move. Thus it provides the privacy
of local data and also avoids expensive data transfer.

Although the standard FL only exchanges model parame-
ters, an adversary can still infer privacy-sensitive information
from the leaked model parameters [3]–[5]. Even with only the
trained model, an attacker can infer whether a particular data
item belongs to the dataset used for the ML model training
(membership inference attack [3]).

Techniques to address these privacy concerns include Se-
cure Multi-party Computation [6]–[8], Differential Privacy [9],
[10], and combinations of both [11]–[13]. However such ap-
proaches incur large computation overheads, require a trusted
third party for the secret key generation, or sacrifice the quality
of trained models due to the introduced noise. Importantly,
these approaches require a central aggregation server. If the
server is compromised, the leaked ML models cause privacy
risks. Besides, the central aggregator can be a single point
of failure. Many devices, simultaneously uploading model
updates to the server, cause TCP incast [14], which can slow
down the training process.

To avoid challenges with a central server, we choose Al-
ternating Direction Method of Multiplier (ADMM) for de-
centralized aggregation. Several approaches have been pro-
posed to augment ADMM with privacy guarantees by using
Differential Privacy [15]–[17] and homomorphic encryption
[18]. In this work, we propose a different approach: control
a communication pattern among participants. The main idea
is that we develop a protocol to decide which group of
parties should communicate in each round of aggregation to
minimize privacy leakage. We establish its theoretical privacy
guarantee against an honest-but-curious adversary. Our novel
communication pattern generation is inspired by combinatorial
block design theory [19]. To the best of our knowledge, we are
the first to apply combinatorial design theory to develop group
communication patterns for secure decentralized aggregation.
Our secure aggregation protocol forms the basis of a federated
learning algorithm that is privacy preserving and efficient. Our
contributions in this paper are as follows.
• We show that classic ADMM-based aggregation algo-

ar
X

iv
:2

01
2.

07
18

3v
2 

 [
cs

.L
G

] 
 2

8 
D

ec
 2

02
0



rithm has a privacy risk against an honest-but-curious
adversary.

• We propose a scheme that generates disjoint groups
and allows communication only within a group in each
ADMM iteration. This preserves privacy and linear con-
vergence.

• We introduce gap, an approximate measure of privacy,
which provides a trade-off between privacy and accuracy.
The gap represents the number of iterations between two
devices being in the same group. If the gap is at least k,
ADMM can run securely for at most 2k − 1 iterations
without revealing private local model parameters.

• We show that our desired group formation (with the gap
constraints) is equivalent to a class of resolvable balanced
incomplete block design problems in combinatorial de-
sign theory [19]. To the best of our knowledge, we are
the first to explore this connection. We also propose an
efficient randomized algorithm for the group formation.

• We design a FL algorithm with our secure aggregation
and evaluate it on image classification and language
models over the benchmark datasets. Our decentralized
secure FL shows training performance comparable to the
centralized FL [1] with two-round aggregation. We also
analyze the trade-off between the number of communi-
cation rounds in aggregation and the estimation quality.
We evaluate the performance of our proposed randomized
group construction algorithm.

II. DISTRIBUTED AVERAGING BY ADMM

We employ an optimization technique to address the privacy
concern in aggregating the local model parameters. In this
section, we will first formulate the aggregation problem as
a standard distributed optimization problem. Then we will
explore a privacy issue in the optimization formulation. First,
let us define the preliminaries. The number of users (or
data sites) is denoted by n. In FL, each user k has a local
model parameter vector wk 1. The global model parameter is
computed by averaging local parameters. Let x be a variable
of equivalent dimension of wk. Then we can formulate an
optimization problem as follows.

minimize
n∑
k=1

||(x− wk)||22 (1)

The optimal solution of this unconstrained least square
problem is the average, i.e., x∗ = 1

n

∑n
k=1 wk. To solve this

problem in a distributed way, we follow the standard dis-
tributed consensus technique described in [20]. We introduce
local variables xk for each user k ∈ [n] and a consensus
variable z. An equivalent optimization problem of Equation 1
is as follows.

1For simplicity, a vector is used but this generalizes to a tensor.

minimize
n∑
k=1

||(xk − wk)||22 (2)

subject to xk = z, k = 1, . . . , n.

We compute the augmented Lagrangian Lρ(xk, λk, z) as,

n∑
k=1

(||xk − wk||22 + λTk (xk − z) +
ρ

2
||xk − z||2) (3)

Here, λk is a dual variable defined for each user, and ρ ∈ R
is a penalty parameter.

Following the standard ADMM technique as in [20], the
xk-minimization, the z-minimization, and λk updates can be
written as follows.

xik =
1

2 + ρ
(2wk − λi−1k + ρzi−1) (4)

zi =
1

n

n∑
k=1

(xik +
1

ρ
λi−1k ) (5)

λik = λi−1k + ρ · (xik − zi) (6)

Here i is an iteration counter.

A. The ADMM-based Aggregation Algorithm

Algorithm 1 ADMM-based Distributed Averaging

Initialize λ0k for each user k
z0 = 0
for iteration i = 1, 2 . . . do . Until stopping criteria met

for all user k in parallel do
xik = 1

2+ρ (2wk − λi−1k + ρzi−1) . xk minimization
Send yik = xik + 1

ρλ
i−1
k to all

zi = 1
n

∑n
k=1 y

i
k . z minimization

λik = λi−1k + ρ · (xik − zi) . λk update
end for

end for

Algorithm 1 shows the ADMM-based distributed averaging.
Each user k initializes its dual variable λ0k randomly and
sets the consensus variable z0 to zero. In iteration i, user k
calculates xik by minimizing the augmented Lagrangian using
zi−1 and λi−1k (Equation 4). Then users communicate each
other to update the consensus variable zi. Finally, the user k
updates its dual variable λik with the updated xik and zi. The
iterations continue until the stopping criteria are met.

B. Proof of Convergence

Lemma II.1 shows that, after the first iteration of Algo-
rithm 1, the summation of the all the dual variables becomes
a zero vector.

Lemma II.1. ∀i ≥ 1,
∑n
k=1 λ

i
k = 0



Proof.
n∑
k=1

λik =

n∑
k=1

(λi−1k + ρ · (xik − zi))

=

n∑
k=1

(λi−1k + ρ · (xik −
1

n
(

n∑
j=1

xij +
1

ρ

n∑
j=1

λi−1j ))

= 0

Now we will show that the consensus variable z converges
linearly to the true average.

Lemma II.2. The consensus variable converges to the average
linearly at a rate of ρ

ρ+2 .

Proof. We know the optimum value of the consensus variable
z∗ = 1

n

∑n
k=1 wk. Let us define a residual at i-th iteration,

∆zi = zi − z∗.

∆zi = zi − z∗

=
1

n
(

n∑
k=1

xik +
1

ρ

n∑
k=1

λi−1k )− 1

n

n∑
k=1

wk

=
1

n

n∑
k=1

xik −
1

n

n∑
k=1

wk

=
1

n

n∑
k=1

(
1

2 + ρ
(2wk − λi−1k + ρ · zi−1))− 1

n

n∑
k=1

wk

=
ρ

ρ+ 2
(zi−1 − 1

n

n∑
k=1

wk)

=
ρ

ρ+ 2
(zi−1 − z∗)

=⇒ ||∆zi|| ≤ ρ

ρ+ 2
||∆zi−1||

The third line follows Lemma II.1. ||∆zi|| represents zi’s
distance to z∗. Since ρ

ρ+2 < 1, this achieves the linear
convergence.

III. PRIVACY PRESERVING AVERAGING

We see for our problem, ADMM is easily implementable
in a distributed environment and has good convergence. In
Algorithm 1, the privacy preservation may be assumed since
participants do not directly share their private data (i.e., wk).
In [21], the authors claim that ADMM has some privacy
guarantee. But in this section, we will show that Algorithm 1
is insufficient to preserve privacy in our threat model: a semi-
trust or honest-but-curious threat model.

Definition III.1 (Honest-but-curious Threat Model2). In the
honest-but-curious threat model, the participants are assumed
to follow the protocol (honest) but simultaneously accumulate

2The formal treatment of the model is provided in Chapter 7 of [22].

all the information they have seen, e.g., the messages sent to
them (curious).

In the honest-but-curious model, a secure protocol prevents
the participants from inferring the privacy-sensitive data of
others even if they gather all communicated messages.

A. Privacy Analysis of the Classic ADMM-based Algorithm

We show that Algorithm 1 is not secure against honest-but-
curious participants.

Lemma III.1. In all-to-all communication, any honest-but-
curious participant following Algorithm 1 can retrieve the
privacy-sensitive data (i.e., w) when it collects messages for
at least two consecutive iterations.

Proof. Assume that a user k is a honest-but-curious participant
and wants to know the private data of a user k′, wk′ . For
simplicity, suppose that the ρ value are shared among all
participants. Note that the user k knows z1 and ρ but it
does not know λ0k′ . Throughout the proof, boldface terms are
constant terms with respect to the user k: i.e., the user k knows
the values of them.

In the first iteration, the user k receives a message from the
user k′, y1

k′ .

y1
k′ = x1k′ +

1

ρ
λ0k′ (7)

The user k knows the consensus value z1, So it can calculate
λ1k′ as follows.

λ1k′ = λ0k′ + ρ(x1k′ − z1)

= λ0k′ + ρ(y1
k′ −

1

ρ
λ0k′ − z11)

= ρ(y1
k′ − z1) (8)

At this point, the user k cannot retrieve wk′ as Equation 7
have two unknowns. In the second iteration, the user k receives
a following message from the user k′.

y2
k′ = x2k′ +

1

ρ
λ1k′ (9)

Since k knows how xk′ is updated, it may plug the value
of xk′ into the following equation and obtain the private data
wk′ .

x2
k′ =

1

2 + ρ
(2wk′ − λ1k′ + ρz1) (10)

=⇒ wk′ = ((2 + ρ)x2
k′ + λ1k′ − ρz1)/2 (11)



B. Enhancing Privacy through the Gap in Communication

We see that the privacy is not guaranteed in all-to-all
communication (Lemma III.1). A natural approach would
then be to limit communication among users and minimize
information to infer private data. We adopt this approach and
systematically analyze it.

In Algorithm 1, users communicate messages yik = xik +
1
ρλ

i−1
k , which is required to calculate the consensus variable

zi, the average of the yiks. In all-to-all communication, zi can
be computed in a single communication round.

However, we observe that all-to-all communication is not
required. An alternative communication pattern can be used.
For instance, we can partition users into groups; users only
communicate their yik within a group g and compute the
intermediate zig , the average yiks in the group. Next, they
communicate the intermediate zig across groups to compute
the mean of zigs, which turns to be the final zi.

This communication scheme does not affect the ADMM
convergence. Interestingly, this group-based communication
approach provides the desired privacy guarantee if the groups
follow a certain gap constraint.

Definition III.2 (Gap). Given any two users, a gap is the
number of consecutive iterations, after which they communi-
cate their y messages.

Definition III.3 (Group). A group of users is the participants
who communicate their y messages with each other in an
iteration.

We denote tg as the gap size, g as the set of groups and s as
the number of participants in a group. Note that in Algorithm 1
tg = 1, |g| = 1, and s = n.

A gap of tg means that no two participants can be in
the same group for consecutive tg iterations of the ADMM
aggregation. Let us now analyze the ADMM algorithm with
the gap and group properties. Let Tp be the number of
iterations after which the privacy is revealed.

Theorem III.2. Assuming s > tg
tg−1 , Tp = 2tg

Proof. Let T and i be the number of ADMM iterations and
an iteration counter, respectively. Since we are free to choose
T (without loss of generality), we assume T is a multiple of
tg . Also let k be an honest-but-curious participant who wants
to learn the model parameter of k′. From k’s point of view,
the best case is when k and k′ are part of the same group for
T iterations, which provides the maximum information about
k′. At iteration i, k has 3 equations concerning k′ as follows.

xik′ =
1

2 + ρ
(2wk′ − λi−1k′ + ρzi−1) (12)

yik′ = xik′ +
1

ρ
λi−1k′ (13)

λik′ = λi−1k′ + ρ · (xik′ − zi) (14)

This gives a total 3T equations for T iterations. Let us
analyze the number of unknowns in the system of these 3T
equations. In Equation 12, wk′ is unknown across all the T

iterations. Apart from that, we have two more unknowns per
iteration: xi+1

k′ and λik′ .
Now let us turn to Equation 13. Since the gap size is tg ,

k and k′ could be in the same group in at most T
tg

iterations.
Let P be the set of these iteration counters. For j ∈ P , k
knows yjk′ messages. This leaves (T − T

tg
) new unknowns in

Equation 13.
In Equation 14, λT+1

k′ is a new variables at the T -th iteration.
Summing all these, the number of total unknowns across the
T iterations is 1 + 2T + (T − T

tg
) + 1 =

3Ttg−T
tg

+ 2.
Retrieving the private data of k′ is now equivalent to find

a unique solution of this system of 3T linear equations. In
general the unique solution exists if the number of unknowns
matches to the number of equations as follows.

3Tptg − Tp
tg

+ 2 = 3Tp

=⇒ Tp = 2tg

(15)

We also have T more equations concerning yik′ , the inter-
mediate group mean of the form zgj =

∑
u∈gi y

i
u. Here gi is

the group in which k′ belongs at i-th iteration. When k and k′

are in the same group (this happens at most in T
tg

iterations),
there are no unknowns. In other (T− T

tg
) iterations, the number

of unknowns is equal to the size of the group that k′ belongs
to (i.e., s). So the total number of unknowns here is at least
(T − T

tg
)s. We find out the condition of s with which this

system of equations becomes over-determined.

(T − T

tg
)s > T

≡ s > tg
tg − 1

(16)

This holds if tg > 1. Assuming s > tg
tg−1 , the intermediate

equations can be discarded from the attacker’s point of view.

IV. THE “GROUP” CONSTRUCTION ALGORITHM

Figure 1 shows an example of our group construction: a
set of partitions of the nine users {1, . . . , 9} into groups (of
size s = 3) with a gap constraint. Each of the four parti-
tions corresponds to a communication scheme in an ADMM
iteration. The members of a group (triangles) are free to
communicate their y values within themselves in an iteration.
These 4 partitions create a communication gap (tg = 4) over
the ADMM aggregation. According to Theorem III.2, users in
Figure 1 do not reveal privacy information if the aggregation
converges in less than eight iterations (2tg = 8).

A. Connection to Combinatorial Design Theory

We connect our group formation problem to a well-known
problem in combinatorial design theory. We need a couple of
definitions from the combinatorial block design theory.



Fig. 1: Communication Group Partition Example for 9 Users

Definition IV.1 (Balanced Incomplete Block Design (BIBD)).
A balanced incomplete block design (BIBD) B(n, s, t) is a
pair of (N, q) such that,

• N is a set of n elements.
• q is a collection of subsets of N .
• Each element of q (called blocks) is of size exactly s.
• Every pair of distinct elements of N is contained in

exactly t blocks of q.

If t = 1, the blocks are pairwise disjoint. We define a
parallel class as follows.

Definition IV.2 (Parallel Classes and Resolution). A subset
π ⊆ q is called a partial parallel class provided that the
blocks of π are pairwise disjoint. If π partitions N (i.e., the
intersection of the blocks are pairwise empty and the union
of them covers N ), then π is a parallel class. The number of
parallel classes in q is called a resolution. (N, q) is said to
be a resolvable BIBD if q has at least one resolution.

q may have more than one parallel classes, i.e., more
than one partitions of N . For example, if N = {1, 2, 3, 4}
then q = {{1, 2}, {3, 4}, {1, 3}, {2, 4}} contains two parallel
classes (partitions) of N : {{1, 2}, {3, 4}} and {{1, 3}, {2, 4}}.
The resolution of q is 2. We refer the reader to [19] for
comprehensive references of block design problems.

With these definitions, we are now ready to establish a
connection between our group construction and a balanced
incomplete block design problem.

Lemma IV.1. A BIBD B(n, s, 1) with resolution k implies a
gap of k with group size s.

Proof. Since t = 1, the blocks are pairwise disjoint. A
resolution of k ensures k partitions of all users with the block
size of exactly s. These blocks are groups in our construction.
Each partition provides a communication scheme in each

iteration.

Naturally we want to maximize the resolution since a large
gap size allows more iterations under the privacy guarantee
(Theorem III.2) and more iterations minimize estimation error
(Lemma II.2).

A special case of B(n, s, 1) is when n ≡ 3 mod 6 and
s = 3. This is known as a Kirkman triple system [23]. The goal
is to find n−3

2 + 1 parallel classes. Ray-Chaudhuri et al. [24]
propose a solution for Kirkman triple systems. If s = 4, the
corresponding design problem is known as the Social Golfer
Problem [25]. The task here is to maximize the number of
parallel classes for any n divisible by 4. Unfortunately, this
problem still remains unsolved [26].

A constrained programming solver can be used to construct
a solution. In [27], the authors propose different pruning
strategies to speed up the problem-solving time. But these
techniques are based on exhaustive search. They scale poorly
as n increases.

Recently there have been works on the randomized analysis
of combinatorial design problems [28]–[30]. Motivated by
them, we design a randomized heuristic algorithm to solve
a Kirkman triple system problem. Although our algorithm is
not guaranteed to find partitions with the optimal resolution,
it does provide partitions that guarantee the desired privacy.

B. Randomized Group Construction Algorithm
We intend to generate a collection of partitions (Π) of N .

Here N is a vertex set of n users. Each of these partitions con-
sists of pairwise disjoint groups of size 3. Before discussing
our randomized algorithm, let us first state a few preliminaries.

Let G be a complete graph, and H be a 3-uniform hyper-
graph; both defined on the vertex set N . In graph theory, a
matching in a hypergraph is a collection of independent sets
of edges, i.e., the matching edges are vertex disjoint. A perfect
matching is one that covers the entire vertex set. A clique of
size k in a graph is a complete subgraph with k vertices. A
k-clique partition of a graph is a partition of the set of vertices
into cliques of size k. If k = 3, then it is called a triangle,
and a corresponding partition is called a triangle partition.

We observe that a parallel class in a Kirkman triple system
is a perfect matching in H . These matching edges also
correspond to a triangle partition π of G.

Algorithm 2 shows a randomized heuristic algorithm to
generate parallel classes in a Kirkman triple system. We start
with the complete graph G. We randomly sample a triangle Q
from G. Then we remove Q from N and all the edges of Q
from G. We keep repeating this process until we find a triangle
partition (i.e., when N becomes empty). In this case, we add
the triangle partition π into Π, reset N , and start sampling
again. We continue this process until we reach the stopping
criteria.

In the algorithm, we remove the edges of Q from G when
we find a triangle Q. That guarantees the desired pairwise
disjointness.

Note that we can easily extend the triangle removal tech-
nique to the s-clique removal for an arbitrary s. Instead of



Algorithm 2 Randomized-KirkmanTriple

G: Complete graph with nodes n
N : {1, 2, . . . , n}
Π = ∅, π = ∅
repeat

Q: Randomly sampled 3 vertices from N without re-
placement

if Q forms a triangle in G then . A triangle is found
π = π ∪Q
N = N −Q
Remove the edges of π from G
if N = ∅ then . A partition is found

Π = Π ∪ π
π = ∅
N = {1, 2, . . . , n} . Reset N

end if
end if

until Stopping criteria met

Fig. 2: A Communication Example in ADMM Aggregation

sampling a triangle, we can sample a s-clique. In Section VI,
we will show the performance of the algorithm, i.e., the
number of generated partitions with different n for triangles
and 4-cliques.

V. PRIVACY-PRESERVING DECENTRALIZED FEDERATED
LEARNING ALGORITHM

Algorithm 3 shows our decentralized federated learning
protocol (SecureD-FL) that preserves the privacy of each
peer’s local model parameters. Each peer initializes its local
parameters and runs the secure ADMM-based aggregation
(SecureAggregation) to agree on the initial global param-
eters. We will explain how the aggregation is performed later.

Similar to the classic federated learning, our algorithm
consists of multiple rounds. In each FL round, every peer
trains the model on its local dataset and updates the model
parameters (Update). Next the peers synchronize the locally
trained model parameters. Instead of sending out the trained
local model parameters to a central aggregator, the peers
work together to compute the average via our ADMM-based
secure aggregation algorithm (SecureAggregation). After the
aggregation finishes, all peers move to the next round. This
process repeats until the model converges.

Algorithm 3 Privacy-preserving Decentralized FL Algorithm

N : a set of peers, n = |N |
Comm. pattern Π = {π}, a set of partitions π of N into
groups generated by Algorithm 2

for all peer k in parallel do
initialize w0

k

w0 = SecureAggregation(k,w0
k)

for each FL round r = 1, 2, ... do
wrk = Update(k,wr−1)
wr = SecureAggregation(k,wrk)

end for
end for

function SecureAggregation(k,wk)
initialize λ0k
z0 = 000
for iteration i = 1 to I do . I: max iterations

π: (i mod |Π|)-th partition in Π . |Π|: gap size
g: group in π such that k ∈ g
xik = 1

2+ρ (2wk − λi−1k + ρzi−1) . x minimization
Send yik = xik + 1

ρλ
i−1
k to other peers in g

zig = 1
n

∑
u∈g y

i
u . Partial z sum

Send zig to the other groups ( 6= g)
zi =

∑
h∈π z

i
h . Final z sum

λik = λi−1k + ρ · (xik − zi) . λ update
end for
return zI

end function

function Update(k,w)
for local epoch e = 1 to E do . E: # local epochs

for mini batch b ∈ local dataset Dk do
w = w − η∇l(w; b) . SGD

end for
end for
return w

end function

Our secure ADMM-based aggregation consists of multiple
iterations. Figure 2 shows a communication example in a
single ADMM iteration. In each iteration, every peer performs
the x minimization and communicates its y value with the
other peers in the same group to compute the group’s partial
z sum. Then peers in one group send its group’s partial z sum
to peers in the other groups (inter-group communication) to
compute the final z sum. Peers update their λs with the final
z sum and this concludes the iteration.

Iterations are repeated until the predefined maximum itera-
tions I . The zI would be an estimate of average of all peers’
local model parameters.

We assume that the peers know their communication pattern
generated by Algorithm 2. This can be achieved easily. For
example, the same random seed can be distributed over all



TABLE I: Dataset details

Dataset # Users # Train Samples # Test Samples

FEMNIST [32] 3,483 351,333 40,668
Shakespeare [32] 715 37,986 5,464
CIFAR-10 [33] 1,000 50,000 10,000

peers at the beginning. Then each peer generates a communi-
cation pattern with the same randomized group construction
and follows the same communication pattern across the entire
ADMM iterations. The communication pattern itself does not
relate to any privacy-sensitive data. In contrast to the secret
key generation in homomorphic encrpytion, the random seed
generation and distribution can be done without any privacy
concern.

VI. EVALUATION

We implement SecureD-FL on top of PyTorch [31] v1.5.1
that simulates the federated learning for image classification
and language model tasks. We run experiments on our local
machine with an Intel i9-7960X CPU, 128 GB memory, and
four NVIDIA GTX 2080 GPUs.

In the evaluation, we answer the following questions: (i)
How does SecureD-FL influence the quality of trained
models (with respect to test accuracy)? (ii) How does the
number of ADMM iterations affect the estimation quality?
(iii) How does our randomized group construction algorithm
(Algorithm 2) generate parallel classes effectively?

A. Experimental Setup

Datasets. We utilize an existing FL benchmark dataset
(LEAF [32]) and generate a new federated version of CIFAR-
10 [33] for a more complicated ML task. We use two datasets
from LEAF [32] for image classification (FEMNIST) and next
character prediction (Shakespeare). FEMNIST is a federated
version of Extended MNIST [34] (10 digits and 52 alphabet
characters) where the dataset is partitioned based on writers.
We use only digits data and users with at least 10 samples.
The Shakespeare dataset is built from the Complete Works of
William Shakespeare [35] by partitioning lines in the plays
based on the speaking roles. In both datasets, we split each
partition into 90% training and 10% test data.

To evaluate on a large ML model, we generate a federated
version of CIFAR-10 [33], a popular image classification
benchmark dataset with 10 classes. Unlike the LEAF dataset,
CIFAR-10 does not contain metadata to create non-i.i.d data.
We randomly partition training and test samples across 1,000
clients evenly. Details about the datasets are in Table I.

Models. For FEMNIST, we use a convolutional neural
network comprising 5× 5 and 2× 2 convolutional layers with
32 and 64 filters each of which is followed by a 2 × 2 max-
pooling layer, a 512-unit fully connected layer with ReLU
activation, and a softmax layer. For Shakespeare, we train a
recurrent neural network that consists of an embedding layer
with 100 dimensions, a GRU with 128 hidden units, and a

TABLE II: Best Test Accuracy Over Training

# Peers Datasets Local-Only FedAvg SecureD-FL

9
FEMNIST 99.01% 99.52% 99.53%

Shakespeare 50.54% 52.70% 52.71%
CIFAR-10 57.13% 77.69% 77.33%

15
FEMNIST 98.88% 99.52% 99.53%

Shakespeare 49.32% 51.79% 51.78%
CIFAR-10 48.68% 76.64% 76.08%

softmax layer. We use ResNet-18 [36] for the federated version
of CIFAR-10.

We use 9 and 15 peers representing distributed sites that
train a ML model in a federated fashion. Since the number of
peers is smaller than the number of users in the datasets, we
randomly assign the same number of users in the datasets to
each peer. As a result, each peer uses a collection of data for
those users as its local dataset.

We compare three different methods: Local-only, Fe-
dAvg [1], and our SecureD-FL.

In Local-Only, every peer trains a ML model over only its
local dataset without any communication.

FedAvg [1] works as follows. A central server maintains
global ML model parameters. Peers receive the global model
parameters from the server and perform training on local
datasets for the pre-defined local epochs. Peers then send
locally trained model parameters to the server. The central-
ized server aggregates these model parameters by averaging
them. These steps, composing a single FL round, repeat until
convergence.

For all the experiments, we train models for 50 FL rounds
with a batch size of 32, a learning rate of 0.001, and the
number of local epochs 1. We use the RMSProp [37] optimizer
for FEMNIST and CIFAR-10, and the Adam [38] optimizer
for Shakespeare.

For secure aggregation, peers initialize λ by sampling from
a uniform distribution on [0, 1). To preserve privacy in the
aggregation (Section III), we create a gap in communication
by using the group construction algorithm (Algorithm 2). With
9 and 15 peers, the algorithm generates 4 and 5 partitions
(gaps), respectively. The gap sizes of 4 and 5 preserve the
privacy of the local parameters respectively up to 7 and
9 ADMM iterations (Theorem III.2). We set the maximum
ADMM iteration to 2, which not only preserves privacy (≤ 7
and ≤ 9) but also makes the algorithm practical by minimizing
the communication overhead while offering the estimation
closer to true average. We will discuss the effect of the number
of ADMM iterations in detail later (Section VI-C).

B. Test Accuracy Comparison

Figure 3 shows test accuracy per round over all the peers
for Local-Only, FedAvg, and our SecureD-FL with 9 and
15 peers. Table II shows the best test accuracies for different
configurations in the experiments.

When peers do not synchronize each other (Local-Only),
the trained models are overfitted to the local training dataset,



(a) FEMNIST (9 peers) (b) Shakespeare (9 peers) (c) CIFAR-10 (9 peers)

(d) FEMNIST (15 peers) (e) Shakespeare (15 peers) (f) CIFAR-10 (15 peers)

Fig. 3: Test Accuracy per Round for Training over Different Datasets with 9 and 15 Peers.

which results in lower test accuracy than FedAvg and
SecureD-FL. The overfitting exacerbates with more peers
due to smaller local dataset.

FedAvg and SecureD-FL show comparable test accura-
cies for all the datasets. For FEMNIST and Shakespeare, the
test accuracy differs only less than 0.02%.

For CIFAR-10, the test accuracy decreases 0.46% for 9
peers and 0.73% for 15 peers. ResNet-18 has more parameters
than the models for the other datasets. More parameters
increase the accumulated estimation error, which adversely
affects the trained model performance. Increasing the number
of peers makes the estimation error more significant. Despite
these, we do not observe any substantial degradation of test
accuracy between FedAvg and SecureD-FL. In all cases, the
degradation is only less than 1%.

C. Trade-off: # ADMM Iterations vs. Estimation Quality

In this section, we explore a trade-off between the number
of ADMM iterations and the quality of the estimated results.
Although a large number of iterations in ADMM makes the
estimated average closer to the actual average, this can increase
the communication overhead and reveal privacy (Section III).
We explore a sweet spot that minimizes the communication
overhead, keeps the estimation error low, and still provides
the privacy guarantee for local model parameters.

We compare estimated values by the ADMM-based ag-
gregation and actual averages of model parameters in real
ML training. For this, we generate 10 checkpoints of model
parameters (in every five FL rounds) during the training over

Fig. 4: Average MSE with Different # ADMM Iterations

FEMNIST by FedAvg. We run the ADMM aggregation for
each checkpoint, measure mean squared error (MSE), and
calculate the averaged MSE over the 10 checkpoints.

We use 9 peers for training with a gap size of 4, which al-
lows at most seven ADMM iterations to guarantee the privacy
(Theorem III.2). We vary the number of iterations in ADMM
aggregations and calculates averaged MSEs. Figure 4 shows
the results of the experiment. The average MSE decreases fast
as the number of iterations increases. After 4 iterations, the
error drops below 10−13.

To see how estimation error in ADMM aggregation affect
test accuracy, we run another set of experiments. We perform
training for the FEMNIST dataset with 9 peers with various



Fig. 5: Test Accuracy per FL Round with Different # ADMM
Iterations (FEMNIST)

Fig. 6: Group Construction Algorithm Performance

numbers of ADMM iterations. Figure 5 shows per-round test
accuracy with different numbers of ADMM iterations. For
ADMM iterations greater than 1, the estimation error due to
early termination does not adversely affect the test accuracy.
The difference in accuracy across the ADMM iterations is
negligible. So for the experiments in Section VI-B, we set the
number of ADMM iterations to 2. This decreases the commu-
nication overhead and also preserves the desired privacy.

D. Randomized Group Construction Algorithm Performance

We evaluate the randomized group construction algorithm
(Algorithm 2) to construct the communication groups. Figure
6 shows a plot of the our group construction algorithm
performance. We plot the number of generated parallel classes
(i.e., the number of partitions of the peers) by varying the
number of peers. The red and green lines are the number of
parallel classes for group sizes 3 and 4, respectively. We see
that the number of generated partitions increases as the number
of peers grows. This also shows the applicability of Algorithm
2 to construct groups of size more than 3.

VII. RELATED WORK

Several approaches have been proposed to provide privacy
in ADMM. In [21], the authors introduce several transforma-
tion methods to alter the objective function or constraints in a
way that transmitted messages are safe under an eavesdropping
attack. But as we have shown in Lemma III.1, transformation-
based methods are not enough for protection against honest-
but-curious attacks. Differential Privacy (DP) is also con-
sidered to preserve privacy in ADMM [15]–[17]. Although
DP offers quantitative privacy guarantees, it is challenging
to accurately estimate sensitivity and control the privacy-
accuracy trade-off. The authors in [18] augment ADMM with
expensive homomorphic encryption which we avoid.

In FL, Secure Multi-party Computation (SMC) techniques
have been employed to preserve the privacy of transferring
model parameters. PySyft [13] and Chen et al. [7] provide
the privacy guarantee by using SPDZ [39]. Truex, et al. [11]
utilizes a threshold-based addictive homomorphic encryption
scheme [40]. However, these approaches assume that secret
keys are generated and distributed to participants securely [7],
[11], [13] or a trusted third party is essential over the entire
computation [12]. These are not required by our secure aggre-
gation method. Bonawitz et al. [6] addresses the trusted third
party requirement by including the secret key generation into
the aggregation protocol. All these approaches to federated
learning need a centralized aggregation entity.

Along with SMC, employing DP on FL has been also pro-
posed in prior work [11]–[13], but the challenges in estimating
sensitivity and privacy and model accuracy trade-off have not
fully addressed. Our proposed secure aggregation algorithm is
compatible with DP, which we leave as future exploration.

The authors in [41], [42] propose mechanisms for privacy
preserving distributed optimization using a combination of
ADMM optimization and homomorphic encryption. In com-
parison, our approach avoids costly homomorphic encryption.
DP-ADMM [16] combines ADMM optimization with differ-
ential privacy. The authors in [17] propose a perturbation
method for ADMM where the perturbed term is correlated
with ADMM penalty parameters.

VIII. CONCLUSION

In this paper, we have developed a new decentralized
federated learning algorithm (SecureD-FL), focusing on the
privacy preservation of ML models in training. We identified
privacy weakness in the classical ADMM-based aggregation.
To address this issue, we introduced a communication pattern
(gap) that enables privacy protection of ML model parameters
in the ADMM-based aggregation. We proposed a randomized
algorithm to efficiently generate this communication pattern
by connecting it to balanced block design from combinatorial
mathematics. We proved the privacy guarantee of our aggre-
gation protocol in the honest-but-curious threat model.

Our evaluation results with the benchmark datasets showed
that SecureD-FL performed ML training comparable to the
centralized standard FL method (< 0.73% degradation in test
accuracy) with the privacy guarantee.



REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS ’17), 2017, pp. 1273–1282.

[2] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning,
2016.

[3] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP ’17), 2017, pp. 3–18.

[4] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE Symposium on
Security and Privacy (SP ’19), 2019, pp. 739–753.

[5] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
Symposium on Security and Privacy (SP ’19), 2019, pp. 691–706.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17), 2017, pp. 1175–1191.

[7] V. Chen, V. Pastro, and M. Raykova, “Secure computation for machine
learning with spdz,” in NIPS Workshop on Privacy Preserving Machine
Learning (PPML ’18), 2018.

[8] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“Quotient: Two-party secure neural network training and prediction,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’19), 2019, p. 1231–1247.

[9] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15), 2015, p. 1310–1321.

[10] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’16), 2016, pp. 308–318.

[11] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, “A hybrid approach to privacy-preserving federated learning,”
in Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security (AISec ’19), 2019, p. 1–11.

[12] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “HybridAlpha:
An efficient approach for privacy-preserving federated learning,” in
Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security (AISec ’19), 2019, p. 13–23.

[13] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” in NIPS Workshop on Privacy Preserving Machine Learning
(PPML ’18), 2018.

[14] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Un-
derstanding tcp incast throughput collapse in datacenter networks,” in
Proceedings of the 1st ACM Workshop on Research on Enterprise
Networking (WREN ’09), 2009, p. 73–82.

[15] T. Zhang and Q. Zhu, “Dynamic Differential Privacy for ADMM-Based
Distributed Classification Learning,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 1, pp. 172–187, jan 2017.

[16] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “Dp-admm:
Admm-based distributed learning with differential privacy,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 1002–1012,
2020.

[17] X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and accu-
racy of admm-based distributed algorithms,” in International Conference
on Machine Learning (ICML ’18), 2018, pp. 5796–5805.

[18] C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving
decentralized optimization,” IEEE Transactions on Information Foren-
sics and Security, vol. 14, no. 3, pp. 565–580, 2018.

[19] D. Stinson, Combinatorial designs: constructions and analysis.
Springer Science & Business Media, 2007.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[21] P. Weeraddana and C. Fischione, “On the privacy of optimization,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 9502 – 9508, 2017.

[22] G. Oded, Foundations of Cryptography: Volume 2, Basic Applications,
1st ed. Cambridge University Press, 2009.

[23] R. Abel and S. Furino, “Kirkman triple systems,” The CRC Handbook
of Combinatorial Designs, pp. 88–89, 1996.

[24] D. K. Ray-Chaudhuri and R. M. Wilson, “Solution of kirkman’s school-
girl problem,” in Proceedings of Symposia in Pure Mathematics, vol. 19,
1971, pp. 187–203.

[25] C. J. Colbourn, CRC handbook of combinatorial designs. CRC press,
2010.

[26] E. J. Pegg, “Social golfer problem,” from MathWorld–A Wolfram
Web Resource, created by Eric W. Weisstein. [Online]. Available:
https://mathworld.wolfram.com/SocialGolferProblem.html

[27] N. Barnier and P. Brisset, “Solving kirkman’s schoolgirl problem in a
few seconds,” Constraints, vol. 10, no. 1, pp. 7–21, 2005.

[28] M. Kwan, “Almost all steiner triple systems have perfect matchings,”
Proceedings of the London Mathematical Society, vol. 121, no. 6, pp.
1468–1495, 2020.

[29] A. Ferber and M. Kwan, “Almost all steiner triple systems are almost
resolvable,” arXiv preprint arXiv:1907.06744, 2019.

[30] P. Keevash, “Hypergraph matchings and designs,” in Proceedings of the
International Congress of Mathematicians (ICM ’18), 2019, pp. 3113–
3135.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Proceedings of the 33rd
Conference on Neural Information Processing Systems (NeurIPS ’19),
2019.

[32] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated
Settings,” in Workshop on Federated Learning for User Privacy and
Data Confidentiality (FL-NeurIPS ’19), 2019.

[33] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[34] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: an exten-
sion of MNIST to handwritten letters,” arXiv preprint arXiv:1702.05373,
2017.

[35] W. Shakespeare, The complete works of William Shakespeare, publicly
available at http://www.gutenberg.org/ebooks/100.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’16), 2016, pp. 770–778.

[37] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent,”
2012. [Online]. Available: http://www.cs.toronto.edu/∼hinton/coursera/
lecture6/lec6.pdf

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in the 3rd International Conference on Learning Representations (ICLR
’15), 2015.

[39] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Proceedings of
the 32nd Annual Cryptology Conference on Advances in Cryptology
(CRYPTO ’12), Berlin, Heidelberg, 2012, p. 643–662.

[40] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology (EUROCRYPT ’99), 1999,
pp. 223–238.

[41] C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving
decentralized optimization,” IEEE Transactions on Information Foren-
sics and Security, vol. 14, no. 3, pp. 565–580, 2019.

[42] M. Ruan, M. Ahmad, and Y. Wang, “Secure and privacy-preserving
average consensus,” in Proceedings of the 2017 Workshop on Cyber-
Physical Systems Security and Privacy (CPS ’17). New York, NY,
USA: Association for Computing Machinery, 2017, p. 123–129.

https://mathworld.wolfram.com/SocialGolferProblem.html
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

	I Introduction
	II Distributed Averaging by ADMM
	II-A The ADMM-based Aggregation Algorithm
	II-B Proof of Convergence

	III Privacy Preserving Averaging
	III-A Privacy Analysis of the Classic ADMM-based Algorithm
	III-B Enhancing Privacy through the Gap in Communication

	IV The ``Group'' construction algorithm
	IV-A Connection to Combinatorial Design Theory
	IV-B Randomized Group Construction Algorithm

	V Privacy-preserving Decentralized Federated Learning Algorithm
	VI Evaluation
	VI-A Experimental Setup
	VI-B Test Accuracy Comparison
	VI-C Trade-off: # ADMM Iterations vs. Estimation Quality
	VI-D Randomized Group Construction Algorithm Performance

	VII Related Work
	VIII Conclusion
	References

